Search results for "histone variants"
showing 10 items of 11 documents
Histones, Their Variants and Post-translational Modifications in Zebrafish Development.
2020
Complex multi-cellular organisms are shaped starting from a single-celled zygote, owing to elaborate developmental programs. These programs involve several layers of regulation to orchestrate the establishment of progressively diverging cell type-specific gene expression patterns. In this scenario, epigenetic modifications of chromatin are central in influencing spatiotemporal patterns of gene transcription. In fact, it is generally recognized that epigenetic changes of chromatin states impact on the accessibility of genomic DNA to regulatory proteins. Several lines of evidence highlighted that zebrafish is an excellent vertebrate model for research purposes in the field of developmental ep…
Replication-independent expression of H1˚ and H3.3 histone variants is probably regulated by different RNA-binding proteins
2012
DNA in eukaryotes is wrapped around core histones to form nucleosomes, the basic units of chromatin. The linker histones H1 bind DNA where it enters and leaves the nucleosome, thus stabilizing higher order structures. Chromatin is a dynamic complex, modulated by different processes such as DNA-methylation, post-translational modifications of histones, and incorporation of specific histone variants. Throughout rat brain development, expression of H1° and H3.3 histone variants is mainly regulated at the post-transcriptional level. These proteins are of interest for their possible involvement in the replication-independent chromatin remodelling induced by extracellular stimuli. We previously c…
RNA-binding ability of PIPP in requires the entire protein
2003
Post-transcriptional fate of eukaryotic mRNAs depends on association with different classes of RNA-binding proteins (RBPs). Among these proteins, the cold-shock domain (CSD)-containing proteins, also called Y-box proteins, play a key role in controlling the recruitment of mRNA to the translational machinery, in response to environmental cues, both in development and in differentiated cells. We recently cloned a rat cDNA encoding a new CSD-protein that we called PIPPin. This protein also contains two putative double-stranded RNA-binding motifs (PIP(1) and PIP(2)) flanking the central CSD, and is able to bind mRNAs encoding H1 degrees and H3.3 histone variants. In order to clarify the role of…
RNA-Binding Proteins which interact with mRNAs for H1° and H3.3 histone variants
2014
Oligodendroglioma cells synthesize the differentiation-specific linker histone H1˚ and release it into the extracellular environment through shed ves…
2013
Chromatin remodelling can be involved in some of the epigenetic modifications found in tumor cells. One of the mechanisms at the basis of chromatin dynamics is likely to be synthesis and incorporation of replacement histone variants, such as the H1° linker histone. Regulation of the expression of this protein can thus be critical in tumorigenesis. In developing brain, H1° expression is mainly regulated at the post-transcriptional level and RNA-binding proteins (RBPs) are involved. In the past, attention mainly focused on the whole brain or isolated neurons and little information is available on H1° expression in other brain cells. Even less is known relating to tumor glial cells. In this st…
Histone H1° and H3.3 RNA-binding proteins identified in the developing rat brain
2011
Histone H1° RNA-binding proteins in developing rat brain.
2011
Histone-mediated transgenerational epigenetics
2019
Abstract Epigenetic mechanisms operate at the interface between the environment and genome, by converting the environmental stimuli to phenotypic responses through changes in the chromatin landscape, which ultimately affects gene expression in the absence of alterations in DNA sequence. In this scenario, transgenerational inheritance occurs when epigenetic variations induced by environmental stimuli are transmitted through the germ line to succeeding generations that had never experienced those stimuli. There is an ever-growing list of reports indicating that histones are fundamental players in these processes in a variety of organisms. In this chapter, we provide a perspective on histone-d…
Purification by affinity chromatography of H1 RNA-Binding Proteins from rat brain
2003
Post-transcriptional regulation of mRNA metabolism is involved in processes as different as cell fate specification in development and cell response to a large variety of environmental cues. Regulation of all steps of RNA metabolism depends on RNA-binding proteins (RBPs). By using a T1 RNase protection assay, we previously identified three H1° RNA-binding factors (p40, p70 and p110), highly expressed in the rat brain. Here we report enrichment of these factors from brain extracts, obtained by affinity chromatography of biotinylated H1° RNA-protein complexes on streptavidin-conjugated paramagnetic particles. The purified proteins maintain RNA-binding ability and preference for histone messag…
RNA-binding activity of the rat calmodulin-binding PEP-19 protein and of the long PEP-19 isoform
2012
Synthesis of H1˚ histone protein, in the developing rat brain, seems to be regulated mainly at the post-transcriptional level. Since regulation of RNA metabolism depends on a series of RNA-binding proteins, we have been searching for RNA-binding proteins involved in the post-transcriptional regulation of the H1˚ gene. We recently reported isolation, from a cDNA expression library, of an insert encoding a novel protein, the C-terminal half of which is identical to that of PEP-19, a brain-specific protein involved in calcium metabolism. The novel protein was called long PEP-19 isoform (LPI). Herein we show that LPI, as well as PEP-19, can bind H1˚ RNA. Moreover, in order to improve production…